

Buddha Institute of Technology

Gorakhpur

Department of Mechanical Engineering ALLOTMENT BASED ON COMPETENCY SKILLS Academic Session: 2022-223

Name of the Staff	Mr Vikas Kumar Singh
Area of Specialization	CAD/CAM
Subject Allotted	Strength of Material

Sl. #	Course Code	Course Title	Semester	Theory/Practical
1.	KME502	Strength of Material	V Sem Batch A	Theory

HOD

Course Outcome and Programme Outcome

Program : B. Tech.

Branch : ME

Semester : V

Session : 2022-23

Name of the Course : Strength of Material

Code :KME502

Name of the Course Instructor : Vikas Kumar Singh

Designation : Assistant Professor

Department : Mechanical Engineering

Description of the Course Outcome:

СО	After completion of the course students will be able to:
KME 502	Understand the concept of stress and strain under different conditions of loading
KME 502	Determine the principal stresses and strains in structural members
KME 502	Determine the stresses and strains in the members subjected to axial, bending and torsional loads.
KME 502	Apply the concepts of stresses and strain in solving problems related to springs, column and pressure vessels
KME 502	Calculate the slope, deflection and buckling of loaded members
KME 502	Analyze the stresses developed in straight and curved beams of different cross sections

Buddha Institute of Technology, Gorakhpur

Department: Mechanical Engineering

Academic Semester: July – Dec 2022

Semester: V Section: A Course Code: KME502 Course: Strength of Material

Course Instructor: Mr. Vikas Kumar Singh Contact Hours /week: 06 # of credits: 03

CIE Marks: 50 SEE Marks: 100 Exam Hours: 03

Prerequisites if any:								
Code No Course Name Description Semeste								
KME402	Engineering mechanics	Engineering mechanics	IV					

Content delivery:	Chalk & Board, DLP, System/Laptop with social media videos

	COURSE SYLLABUS:					
ModuleNo	Contents of Module	Hrs	COs			
1	Compound stress and strains: Introduction, normal stress and strain, shear stress and strain, stresses on inclines sections, strain energy, impact loads and stresses, state of plane stress, principal stress and strain, maximum shear stress, Mohr's circle for plane stress, three dimensional states of stress & strain, equilibrium equations, generalized Hook's law, theories of failure. Thermal Stresses.	14	CO1			
2	Stresses in Beams: Pure Bending, normal stresses in beams, shear stresses in beams due to transverse and axial loads, composite beams. Deflection of Beams: Differential equation of the elastic curve, cantilever and simply supported beams, Macaulay's method, area moment method, fixed and continuous beams Torsion: Torsion, combined bending & torsion of solid & hollow shafts, torsion of thin walled tubes.	10	CO2			
3	Helical and Leaf Springs: Deflection of springs by energy method, helical springs under axial load and under axial twist (respectively for circular and square cross sections) axial load and twisting moment acting simultaneously both for open and closed coiled springs, laminated springs. Columns and Struts: Buckling and stability, slenderness ratio, combined bending and direct stress, middle third and middle quarter rules, struts with different end conditions, Euler's theory for pin ended columns, effect of end conditions on column buckling, Ranking Gordon formula, examples of columns in mechanical equipment and machines.	11	CO3			
4	Thin cylinders & spheres: Introduction, difference between thin walled and thick walled pressure vessels, thin walled spheres and cylinders, hoop and axial stresses and strain, volumetric strain. Thick cylinders: Radial, axial and circumferential stresses in thick cylinders subjected to internal or external pressures, compound cylinders, stresses in rotating shaft and cylinders, stresses due to interference fits.	10	CO4			
5	Curved Beams: Bending of beams with large initial curvature, position of neutral axis for rectangular,trapezoidal and circular cross sections, stress in crane hooks, stress in circular rings subjected to tension or compression. Unsymmetrical Bending: Properties of beam cross-section, slope of neutral axis, stress and deflection in unsymmetrical bending, determination of shear center and flexural axis (for symmetry about both axis and about one axis) for I-section and channel section.	12	CO5			

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

KME502	Understand the concept of stress and strain under different conditions of loading
KME502	Determine the principal stresses and strains in structural members
KME502	Determine the stresses and strains in the members subjected to axial, bending and torsional loads and Calculate the slope, deflection and buckling of loaded members
KME502	Apply the concepts of stresses and strain in solving problems related to springs, column and pressure vessels
KME502	Analyze the stresses developed in straight and curved beams of different cross sections

Mapping of CO v/s PO:

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
KME054.1	3	3	3	2	2	-	-	-	-	-	-	2
KME054.2	-	-	2	1	-	2	-	-	-	2	1	2
KME054.3	-	-	2	1	-	-	-	-	-	2	1	2
KME054.4	-	-	3	1	-	2	3	-	-	2	1	2
KME054.5	-	-	2	1	-	1	-	-	_	2	1	2

Correlation levels: 1-Slight (Low) 2-Moderate (Medium) 3-Substantial (High)

Mapping of CO v/s PSO:

	PSO1	PSO2
KME502.1	3	3
KME502.2	3	3
KME502.3	3	3
KME502.4	3	3
KME502.5	3	3

Gap in the syllabus	NA
	N/A
Topics to be covered	NA NA
beyond syllabus	

Assessment Methodologies:

Sl. No.	Description	Type
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lecture #	Module #	Topics	RBT Levels	Course Outcome Mapping	Planned Date	Actual Date	Faculty Sign	Remark s
1		Introduction to stress			22/8/22			
2		Normal stress and strain			23/8/22			
3		Shear stresses and strain			24/8/22			
4		Stresses on inclined sections 1-D			25/8/22			
5		Stresses on inclined sections 2-D			26/8/22			
6		Tutorial			27/8/22			
7	1	Numerical	L2, L3, L4	CO1	29/8/22			
8		Strain Energy			30/8/22			
9		Impact load and stresses			31/8/22			
10		Plane stress and plane strain			1/9/22			
11		Principle stresses and principle strain			2/9/22			
12		Tutorial			3/9/22			
13		Maximum shear stress in a material			5/9/22			
14		Mohr's circle			6/9/22			

15		Mohr's circle cont.			7/9/22	
16		3-D stress and strain			8/9/22	
17		Generalized Hook's law			9/9/22	
18		Tutorial			10/9/22	
		Theories of failure			12/9/22	
19						
		Theories of failure cont.			13/9/22	
20						
21		Thermal stresses and strain			14/9/22	
22		Pure Banding			15/9/22	
23		Normal stresses in beams			16/9/22	
24		Tutorial			22/9/22	
25		Shear stresses in beams due to transverse loads			23/9/22	
		Shear stresses in beams due			24/9/22	
26		to transverse loads cont.			- 1/ 2/	
27		Shear stresses in beams due to axial loads			1/10/22	
27		Shear stresses in beams due			3/10/22	
28		to axial loads cont.			3/10/22	
29	2	Composite beams	L2, L3, L4	CO2	6/10/22	
30.		Tutorial			10/10/22	
31.		Differential equation of elastic curve			11/10/22	
51.		Deflection of cantilever			12/10/22	
32.		beams			12/10/22	
33.		Deflection of cantilever			13/10/22	
		beams cont. Deflection of cantilever			14/10/22	
34.		beams cont.			17/10/22	
		Deflection of Simply			15/10/22	
35.		supported beams beams cont.				

0.0		Tutorial			17/10/22	
36.						
37.		Deflection of Simply supported beams beams cont.			18/10/22	
38.		Macaulay's method			27/10/22	
39.		Area moment method			28/10/22	
40.		Fixed and continuous beams			29/10/22	
41.		Torsion			31/10/22	
42.		Tutorial			1/11/22	
43.		Combined bending and torsion of solid shaft			7/11/22	
44.		Combined bending and torsion of hollow shaft			8/11/22	
45.		Torsion of thin walled tube			11/11/22	
46.		Spring			12/11/22	
47.		Deflection of spring under axial load			14/11/22	
48.		Tutorial			15/11/22	
49.		Deflection of spring under axial twist			16/11/22	
50.		Deflection of spring under combined loading	L2,L4		17/11/22	
51.		Laminated spring		CO3	18/11/22	
52.		Numrical			19/11/22	
53.	3	Buckling and stability of column			21/11/22	
54.		Tutorial			22/11/22	
55.		Combined bending and direct stresses			23/11/22	
56.		Middle 3 rd and quarter rules			24/11/22	
57.		Euler's theory			25/11/22	
58.		Euler's theory cont.			26/11/22	

59.		Rankine Gordon formulae			28/11/22		
60.		Tutorial			29/11/22		
61.		Thin cylinders	L2.L3	CO4	30/11/22		
62.		Thin cylinders cont.			1/12/22		
63.		Thin Spheres			2/12/22		
64.		Volumetric strain			3/12/22		
65.	4	Numerical			5/12/22		
66.	-	Tutorial			6/12/22		
67.		Thick cylinders			7/12/22		
68.		Thick cylinders cont.			8/12/22		
70.		Stresses due to interference fits			9/12/22		
71.		Curved beam			10/12/22		
72.	5	Position of nuteral axis	L2	CO5	12/12/22		
73.		Stresses			13/12/22		
74.		Unsymmetrical bending			14/12/22		
75.		Stresses in unsymmetrical bendign			15/12/12		

*L1 - Remembering; L2 - Understanding; L3 - Applying; L4 - Analysing; L5 - Evaluating; L6 - Creating

Literature:

Text Books:

- 1. Strength of materials by Sadhu Singh, Khanna Book Publishing Co. (P) Ltd.
- 2. Strength of Material by Rattan, MC GRAW HILL INDIA
- 3. Mechanics of Materials by B.C. Punmia, Laxmi Publications (P) Ltd.

Reference Books:

- 1. Mechanics of Materials by Hibbeler, Pearson.
- 2. Mechanics of material by Gere, Cengage Learning
- 3. Mechanics of Materials by Beer, Jhonston, DEwolf and Mazurek, MC GRAW HILL INDIA
- 4. Strength of Materials by Pytel and Singer, Harper Collins
- 5. Strength of Materials by Ryder, Macmillan.
- 6. Strength of Materials by Timoshenko and Youngs, East West Press.

- 7. Introduction to Solid Mechanics by Shames, Pearson
- 8. Mechanics of material by Pytel, Cengage Learning
- 9. An Introduction to Mechanics of Solids by Crandall, MC GRAW HILL INDIA
- 10. Strength of Materials by Jindal, Pearson Education
- 11. Strength of Materials by Basavajaiah and Mahadevappa, University Press.

Sample Questions:

Question	Questions					
No.						
1	Mohr's Circle for two like stresses $P_1 \& P_2$.					
2	Mohr's Circle construction for two unlike stresses $P_1 \& P_2$.					
3	Theory of failures.					
4	Mohr's Circle for the general case of plane stress.					
5	Differential equation of deflection curve of beam. $M = EI \frac{d^2y}{d^2x}$					
6	Derive an expression for the slope and deflection of a beam subjected to uniform bending moment. $\theta_A = \theta_B = \frac{ML}{2EI}$					
7	Explain Macaulay's method					
8	Derive an expression for the slope and deflection of a beam subjected to uniform bending moment.					
9	Castigliano;s theorem					
10	Explain moment area method foe deflection and slop calculation.					
11	Torsion equation. $\frac{T}{J} = \frac{G\theta}{L} = \frac{\tau}{R}$					
12	Strain energy stored in a body due to torsion					
13	Combined bending & torsion					
14	Bending equation. $\frac{M}{I} = \frac{\sigma}{Y} = \frac{E}{R}$					
15	Distribution of shear stresses					
16	Shear stress distribution over solid rectangular section					
17	Shear stress distribution over triangle section					
18	Shear stress distribution over I-section					

19	Shear stress distribution over solid circular section
20	Helical spring derivation $\delta = \frac{64WR^3n}{Gd^4}$ and $\tau = \frac{16WR}{\pi d^3}$
21	For open coiled with axial load $\delta = 2WR^3 n\pi \sec \sec \alpha \left[\frac{\cos^2 \alpha}{GJ} + \frac{\sin^2 \alpha}{EI} \right]$
22	For open coiled with axial Thrust $\varphi = 2TRn\pi Seca\left[\frac{Sin^2\alpha}{GJ} + \frac{Cos^2\alpha}{EI}\right]$
23	Discuss Rankine-Gordon formula. $P = \frac{\sigma_c A}{1 + a\left(\frac{L_e}{k}\right)^2}$
24	Eulers formula $P = \frac{\pi^2 EI}{L^2}$
25	$P = \frac{\pi^2 EI}{4L^2}$ one end fixed and other end is free
26	$P = \frac{2\pi^2 EI}{L^2}$ one end fixed and other end pinned or hinged
27	$P = \frac{\pi^2 EI}{L^2}$ when both ends are fixed
28	hoop stress or maximum Permissible stress or tensile stress $\sigma_{C} = \frac{Pd}{2t}$
29	Longitudinal stress $\sigma_L = \frac{Pd}{4t}$
30	These equations are called Lame's Equations.
31	Determine the hoop stresses in a thick compound cylinder?
32	Derive the expression for the radial pressure and hoop stress for a thick spherical shell?

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Elaboration on Course Grading Description	Bench Mark Set (Out of 50)
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	40 to 50
Good (B)	The student's performance is good in most of the intended course learning outcomes.	30 to 40
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Less than 20